Michelle D. Wang

Professor of Physics

Howard Hughes Medical Institute Investigator

518 Clark Hall
Cornell University
Ithaca NY 14853

(607) 255-6414

Wang Group website

B.S., 1985, Physics, Nanjing University. Ph.D. student, 1985-86, Institute of Physics, Chinese Academy of Sciences. M.S, 1988, Physics, University of Southern Mississippi. Ph.D., 1993. Biophysics, University of Michigan at Ann Arbor. Postdoctoral Fellow, Biophysics, Princeton University, 1994-97. Assistant Professor, Physics, Cornell University, 1998-2004. Associate Professor, Physics, Cornell University, 2004-2009. Professor, Physics, Cornell University, 2009-present. Outstanding Student Award, Nanjing University, 1985. University of Michigan Biophysics Fellowship, 1988-89. National Cancer Institute Fellowship, 1994. Damon Runyon-Walter Winchell Foundation Postdoctoral Fellowship, 1995-97. Damon Runyon Scholar Award, 1999-00. Dale F. and Betty Ann Frey Scholar of the Damon Runyon-Walter Winchell Foundation, 1999. Alfred P. Sloan Research Fellow, 1999-01. Beckman Young Investigator Award, 1999-02. Keck Foundation Distinguished Young Scholar in Medical Research Award, 2000-07. Provost's Award for Distinguished Scholarship, 2008. Fellow, American Physical Society, elected 2009. Howard Hughes Medical Institute Investigator, 2008-present.

Research Areas

Single molecule mechanical manipulations of biological molecules; high-resolution optical trapping and detection; single molecule fluorescence imaging and detection; nanophotonics and lab-on-a-chip; molecular motor mechanisms; biopolymer kinetics and dynamics; protein-DNA interactions during transcription and replication; modeling of diffusion, kinetics, and dynamics of biomolecules.

Current Research

We are primarily a single molecule biophysics lab based in the Department of Physics at Cornell University.  Our current research focuses on the motion, dynamics, mechanisms, and regulation of molecular motors that translocate along DNA during the replication and transcription of DNA.  To work with biological motors at the single molecule level, we develop and utilize state-of-the-art (and often one-of-a-kind) instruments and novel techniques.  Here we’ll highlight a few novel experimental approaches that we have recently developed. 

Angular Optical Trapping
Our lab pioneered an angular optical trapping technique for simultaneous torque and force generation and detection (La Porta et al., Physical Review Letters, 2004; Deufel et al., Nature Methods, 2007).  When a birefringent particle is trapped in a polarized laser beam, rotation of the laser polarization induces rotation of the particle, while torque exerted on the particle is detected as a change in the polarization of the trapping beam.  This technique allows the control and detection of the torque of a biological molecule attached to the particle and has opened new dimensions for applications of optical trapping techniques.  We have used this technique to determine torque during DNA supercoiling (Forth et al., Physical Review Letters, 2008; Sheinin et al., Physical Review Letters, 2011) and during a Holliday junction migration (Forth et al., Biophysical Journal, 2011).  More recently, we have measured the torque generated by the RNA polymerase motor during transcription (Ma et al., Science, 2013).

DNA Unzipping
Protein-DNA interactions dictate gene expression and replication.  Although several techniques are able to detect the location of an interaction, few are able to measure its strength, a critical determinant of DNA accessibility.  Our lab developed the powerful and versatile DNA unzipping method to measure protein-DNA interactions (Koch et al., Biophysical Journal, 2002; Koch and Wang, Physical Review Letters, 2003; Shundrovsky et al., Nature Structural and Molecular Biology, 2006; Hall et al., Nature Structural and Molecular Biology, 2009).  Using an optical trap, we mechanically separate a double-stranded DNA (dsDNA) with bound proteins into two single strands.  As the unzipping fork reaches a bound protein, the unzipping force increases dramatically, and then reduces suddenly as the interaction is disrupted.  Typically, multiple interactions are detected for a given protein, and the unzipping method maps the locations of these interactions to near single-base-pair precision, while also providing a quantitative measure of their strengths.  A variation of this approach also has also allowed us to gain mechanistic insights into a helicase motor that carries out DNA strand separation activities (Johnson et al., Cell, 2007; Sun et al., Nature, 2011). 

Optical trapping techniques have proven to be powerful tools.  In the past three decades, they have transformed many areas of biochemistry and molecular biology.  Yet these techniques are typically restricted to a specialized group of individuals who spend many years constructing a single instrument, followed by repeated measurements, one molecule at a time.  In order to make these techniques accessible to a broader scientific community, a new generation of optical trapping instruments is essential.  A ‘plug-and-play’ instrument, capable of manipulation with both high resolution and high throughput, would potentially revolutionize the single molecule field.  As the first step towards this goal, we demonstrate dynamic optical trapping control of nanoparticles by an optofluidic waveguide-based resonator (Soltani et al., Optics Express, 2012).  We introduce a new platform in which the photonic device is controlled using electro-optical phase tuning.  This novel electro-optofluidic platform allows the realization of high throughput optofluidic devices with switching, tuning, and reconfiguration capability.

Robert Forties, Jun Lin, Jie Ma, Mohammad Soltani, Bo Sun, and Yi Yang

Graduate Students
Lucy Brennan, James Inman, Jessie Killian, Ming Li, and Summer Saraf

Lab Manager
Dr. Shanna Fellman

  • Spotlight

    Maxim Perelstein
    Finding the mechanism responsible for breaking electroweak symmetry is a current focus of Maxim Perelstein, assistant professor of physics. He also investigates topics in theoretical cosmology, particularly theoretical models for dark energy, dark... read more ||


    Matt Farrar is a graduate student working with Professor Chris Schaffer in the Biomedical Engineering Department to develop novel optical tools for studying neuropathologies of the brain and spinal cord.  “The ability to study the dynamics of... read more



    Tarek Anous, a formerundergraduate student, who worked at the Wilson Lab with Professor Rich Galik on instrumentation for the International Linear Collider (ILC). The ILC is a proposed next-generation particle accelerator with a target date of 2015 to begin operation. Tarek helped construct a small detector that uses cosmic rays in order to simulate the real detector that will be used in the ILC. Cosmic rays hit the scintillator (a plastic rod) and produce photons whose signals ... read more ||


    Dionysios Anninos was recently an undergraduate physics major at Cornell. "The range of possibilities offered at Cornell is overwhelming. One can end up studying the most disparate fields and end up well versed in them. Personally, I tried to exploit this feature to the maximum. I ended up learning a lot of great physics by sampling a large set of physics courses offered at a unique level, as well as exploring economics and mathematics." "Furthermore, through its advanced courses and research opportunities, Cornell offers the student a unique ... read more ||


    Wui Ip Professor Carl Franck and student Wui Ip (who is at Cornell as part of the NSF's Research Experiences for Undergraduates program) are studying how cells interact and signal each other to form complicated structures. For example, cells communicate when conditions are good, and they exchange growth factors. Franck and Ip are focusing on the question "Why do cells need company to grow?" It is well known that a minimum culture is needed to grow cells. What determines that ... read more ||


    Peter Wittich is an assistant professor in LEPP. He collaborates with assistant professor Julia Thom's research group. They are part of an international collaboration preparing the Compact Muon Solenoid (CMS) experiment that will operate at the Large Hadron Collider (LHC) scheduled to begin operation in 2007 in Geneva, Switzerland. Professor Wittich explains that "We're trying to understand fundamental questions such as 'What is the nature of space-time?' and 'Where does mass come from?' We do this by smashing protons together and looking at the very small particles that come out ... read more ||


    Heng Li is a graduate student working with professor Julia Thom's research group at LEPP. The group is part of an international collaboration preparing the Compact Muon Solenoid (CMS) experiment that will operate at the Large Hadron Collider (LHC) scheduled to begin... read more