<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Presenter/Coordinator</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00</td>
<td>Welcome</td>
<td>Professor Lawrence Gibbons, DGS</td>
</tr>
<tr>
<td>10:05</td>
<td>Your First Two Years</td>
<td>Professor Lawrence Gibbons, DGS</td>
</tr>
<tr>
<td>10:20</td>
<td>Graduate Life in Physics</td>
<td>Chris Parzyck, graduate student</td>
</tr>
<tr>
<td>10:35</td>
<td>Core Course Overviews</td>
<td>Course Faculty</td>
</tr>
<tr>
<td>11:10</td>
<td>Physical Sciences Library, BEST Program, Outreach Opportunities</td>
<td>Henrik Spoon, Susi Varvayani, Jen Chu</td>
</tr>
</tbody>
</table>
Your first two years

Lawrence Gibbons
Director of Graduate Studies
Physics Grad Student Orientation
August 17, 2017
The Route to your PhD

- Courses
 - Admission to Candidacy Exam (A exam)
 - Qualifier Exam
 - "Permanent" Special Committee in place

- Begin Research
- Thesis Research
 - 1 to 2 years
 - ~3 years
 - 5.8 years

- Thesis defense

August 17, 2017
Physics Graduate Orientation
The first two years

• **Take Courses**
 - Plan on completing bulk of courses in the first 1 – 2 years

• **Be a Teaching Assistant (TA)**
 - Builds communication skills
 - Teaches (you!) physics
 - A good way to meet faculty and other grads

 Should take ~15 hours per week (prelim weeks might take a little more).
 Spending more than 15?
 i. Streamline
 ii. Seek advice from course instructor
 iii. Seek advice from DGS
The first two years

- Join a research group
 - Aim to work with a research group next summer!
 - Aim to have a permanent research group by the time you’ve completed the bulk of your coursework
 - Grad School: permanent committee a must before start of 3rd year
- When in doubt, consult “yellow book”, available on the Resources for Grad Students page (or the DGS!)
- Interact with your field-assigned special committee
 - Coursework beyond this semester
 - Progress / plans towards a research home
 - Fellowship Proposal
 - Written plan re: interests / groups that best match
 - Advice on TA/coursework based on qualifying exam

August 17, 2017
Core Course Material

- Phys 6510 - Experimental Physics (Fall & Spring)
- Phys 6572 - Quantum Mechanics I (Fall)
- Phys 6561 - Electricity and Magnetism (Fall)
- Phys 6562 - Statistical Physics I (Spring)

- Complete most, or all, of these in your first year. They MUST be complete by the time of your A exam.
 - Core courses not yet completed fair game at A exam, including 6510
- You may skip any EXCEPT Physics 6510 if you have covered the material elsewhere. You (& special committee) decide.
- You can fill in gaps in your preparation with undergraduate courses: Electronics, QM, E&M, Solid State Physics, Lagrangian Mechanics…
Other Courses

- **Advanced introductory courses in your research area**
 - Between 2 and 5, depending on specialty
 - List is available in the “Yellow Book”.

- **Breadth**
 - Take at least one course outside your research area
 - Attend Colloquia
First-year Course load

- Take 2-3 physics courses each semester (typical)
 - TA position should be typically 15 hours/week
 - Again, streamline to spend no more than 15 hours/wk on TA work!
 - TA + 2 courses allows you time to research your research, and even begin engagement at a low level
 - Could take more courses if you are not TA’ing and are not engaged in research.
 - No more than 2 if you are choosing particularly ambitious courses relative to your preparation.
 - If in doubt about which courses to take, attend more courses initially and then drop the ones that don’t match your interests or preparation.
The 12-credit rule

• A relatively new federal regulation. Sigh.
 • Agencies mandate 12 course credits to indicate full time status

• Two take home messages
 1. Grad School considers PhD students full time, regardless of course load.
 2. The Grad school should do everything for you behind the scenes
 • Will initially enroll you with 12 research course credits
 • Will adjust appropriately at end of add/drop period

• Your responsibilities?
 • Decide what courses you want
 • Enroll in them!
Example course selections

Standard preparation:
• Fall
 • E&M
 • QM I
 • Discipline-Based Education Research
• Spring
 • P6510
 • Stat Phys I
 • QM II
 or
 Ph. Teaching & learning
 or
 Accelerator ph.

Notice that all include P6510

Strong QM bkg
• Fall
 • P6510
 • E&M
 • Comp Meth
• Spring
 • Stat Phys I.
 • QM II
 • Comp Phys

Strong QM + EM:
• Fall
 • P6510
 • Field Theory I
• Spring
 • Top’s in HE Thy
 • Field Theory II
 • Intr St Mod

Or
• Fall
 • E&M
 • Comp Methods
 • Solid State I
• Spring
 • P6510
 • Solid State II
 • Stat Phys I

Or
• Fall
 • P6510
 • Solid State I
 • Field Theory
• Spring
 • Stat Phys II.
 • Solid State II
 • Comp. Phys.
The Qualifier Exam (Q Exam)

• What
 • Oral exam with two $\frac{1}{2}$-hour sessions
 • Checks advanced undergraduate physics.

• When
 • First Friday afternoon of every semester
 • First required participation: Spring of 1st year

• Why
 • Largely diagnostic -- are there gaps in your basic working knowledge?
Researching Research

• “Visit” 3 faculty in your first year, either by attending a group meeting or talking one-on-one about research.
 • Think now about which groups you want to check out
 • Meeting Schedules: http://physics.cornell.edu/about-graduate-program#research-group-meetings

• Research Opportunities Events (in October/November)
• Do a “Physics 6520” project with a faculty member whose research interests you.
 • Note: not all research groups offer P6520 options. P6510 is a prerequisite.

• Use next summer to try out an advisor. Start planning now!
• Attend colloquia and seminars.
• Fields other than physics are open to you: Check: Astronomy, Applied & Eng. Phys., Chemistry & Chemical Biology, Materials Science and Eng., Mechanical Eng., Electrical and Computer Eng., Molecular Biology & Genetics,...
Getting advice

- Your Special Committee
 - Three professors whose job is to advise you.
 - Temporary committee:
 - at least one member is from area of interest specified in your application (if any)
 - advice on classes, Cornell and plugging into research.
 - yours until you begin your thesis research.
 - Grad School will enforce formation of permanent committee before start of your 3rd year
 - Permanent committee
 - Your research advisor (= chair if within field of physics) + 2-3 other members that establish your minor
- Your student mentors
- The Yellow Book
- Other professors and students in research areas of interest (to you)
- the Director of Graduate Studies (me, for this year)
NSF & other Fellowships

Expectations:

• Every eligible Cornell Physics Grad student should apply for a fellowship!
 • Most of you: NSF or NSERCC, but investigate all options
 • Excellent list maintained by Grad School, PGS
 • Excellent experience (it’s how we fund research!)
 • When one of you wins, we all win
 • Greater all-around flexibility in our research program
• You are ALL nationally top ranked.
 • Don’t let imposter syndrome stand in your way!
• Every student must define a strategy for exploring their research possibilities
 • Research statements one road for clarifying current interest
 • NOT a commitment on your part: you can take your Fellowship to your permanent research group, even if it differs from your statement
10:00 Welcome
Professor Lawrence Gibbons, DGS

10:05 Your First Two Years
Professor Lawrence Gibbons, DGS

10:20 Graduate Life in Physics
Chris Parzyck, graduate student

10:35 Core Course Overviews
Course Faculty

11:10 Physical Sciences Library
Henrik Spoon
BEST Program
Susi Varvayani
Outreach Opportunities
Jen Chu

11:25 Physics Graduate Society
Thomas Wyse Jackson, PGS President (PGS)

11:40 Support
Janna Lamey, Assistant Dean for Graduate Student Life

11:55 Final Announcements / Questions
Department Life
Graduate Student Orientation 2017
Christopher Parzyck
Welcome!
Department Events

- Weekly Colloquia
- Monday Lunches
- Seminars (LASSP/AEP, LEPP, ...)
- Summer STEM Colloquium
- Journal Clubs
Get to know your fellow grads!

- Weekly coffee hours (Thursdays @ 1500h)
- Weekly board games (Tuesdays @ 1900h)
- LASSP Tea
- WIP Lunches & Coffee Hours
- Fridays at BRB
- Annual Physics Concert
Clubs & Activities

- Outreach opportunities abound
- PE Classes and COE
- Clubs
- Kickball!
Around Town

- The Commons
- Stewart Park
- Ithaca Farmers Market
Around Town

• The Haunt
• The State Theater
• Ithaca Underground
• Festivals!
Around Town
<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
<th>Presenter/Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00</td>
<td>Welcome</td>
<td>Professor Lawrence Gibbons, DGS</td>
</tr>
<tr>
<td>10:05</td>
<td>Your First Two Years</td>
<td>Professor Lawrence Gibbons, DGS</td>
</tr>
<tr>
<td>10:20</td>
<td>Graduate Life in Physics</td>
<td>Chris Parzyck, graduate student</td>
</tr>
<tr>
<td>10:35</td>
<td>Core Course Overviews</td>
<td>Course Faculty</td>
</tr>
<tr>
<td>11:10</td>
<td>Physical Sciences Library</td>
<td>Henrik Spoon</td>
</tr>
<tr>
<td></td>
<td>BEST Program</td>
<td>Susi Varvayani</td>
</tr>
<tr>
<td></td>
<td>Outreach Opportunities</td>
<td>Jen Chu</td>
</tr>
<tr>
<td>11:25</td>
<td>Physics Graduate Society</td>
<td>Thomas Wyse Jackson, PGS President</td>
</tr>
<tr>
<td></td>
<td>(PGS)</td>
<td></td>
</tr>
<tr>
<td>11:40</td>
<td>Support</td>
<td>Janna Lamey, Assistant Dean</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for Graduate Student Life</td>
</tr>
<tr>
<td>11:55</td>
<td>Final Announcements / Questions</td>
<td></td>
</tr>
</tbody>
</table>
Course presentations

- **Core courses**
 - Phys 6572 – Quantum Mechanics I – YT for Csaba Csaki
 - Phys 6510 – Experimental Physics – Paul McEuen (3)
 - Phys 6562 – Statistical Phys I– YT for Jim Sethna
 - Phys 6561 – Classical E&M – Veit Elser

- **More advanced courses (a few common/new choices)**
 - Phys 6553/4 General Relativity I, II – E. Flanagan for Tom Hartman (1)
 - Phys 7635 – Solid-State Physics I – Dan Ralph
 - Phys 7651 – Rel. Quantum Field Theory I – Peter Lepage (2)
 - Phys 7685 – Introduction to Discipline-based Education Research
 – YT for Natasha Holmes
General Relativity

Fall 2018: Physics 6553/Astro 6509: Foundations and Theory
Spring 2019: Physics 6553/Astro 6509: Applications

Alternative: Physics 4445, Introduction to GR, every fall.
P7651 — Intro. Quantum Field Theory

- Introduction to relativistic quantum field theory at the level of Schwartz’s “Quantum Field Theory and the Standard Model” (first half):
 - 2nd Quantization.
 - Feynman perturbation theory.
 - Applications in QED and some QCD.
 - Intro. to renormalization theory.
 - Design/interpretation of quantum field theories.
- Preparation: graduate level quantum mechanics, relativity.
- Peter Lepage (gpl3@cornell); Mon, Wed 8:40-9:55am in Clark 294D.
Physics 6510 Advanced Lab

wiki: https://confluence.cornell.edu/display/PHYS6510/Home

Instructors: Paul McEuen, David Rubin, Carl Frank, Jim Alexander
Lab Director: Nick Szabo

Required of all Graduate Students
Usually taken during the first year

Lectures: Monday 2:30-3:20 132 Rockefeller
(estimation, report writing, ethics, etc.)

Lab: Tuesday, Wednesday 1:25-4:25 PM, 3rd floor Clark
Schedule conflicts: You must be able to attend lectures, all of one lab period, and part of the other lab period.
Quantum Mechanics I. Physics 6572

• Quantum mechanics class geared towards first year physics graduate students. Some knowledge of QM is assumed, but will be self-contained.
• Lectures: MW 8:40-9:55. First lecture Wed. 8/23 Rock 115
• Lecturer: Csaba Csaki
• Textbook: Sakurai: Modern Quantum Mechanics (second ed).
• Topics:
 • Formalism of QM, fundamental concepts
 • Symmetries, angular momentum, spin, Wigner Eckart thm
 • Approximation methods
 • Path integrals
 • Identical particles, density matrix

• One midterm + final, weekly homework sets due Wednesdays.
• Homework sessions Tuesday evenings + Piazza
• Questions: csaki@cornell.edu
Entropy, Order Parameters, and Complexity

Graduate Statistical Mechanics 6562, Spring 2018
MWF, 10:10-11:00, Clark 294D
Jim Sethna sethna@lassp.cornell.edu, PSB 412, 5-5132, office hours Fri 11-12:30.
www.physics.cornell.edu/sethna/teaching/562/

- Aimed broadly at grads in physics, computer science, engineering, biology, mathematics, and the social sciences
- Quantum mechanics will be important only for two weeks during the course. Previous statistical mechanics is not required, but extra work to catch up would be necessary. A high level of scientific sophistication, however, is expected.
- Will use a 'flipped classroom' format, with activities during class hours and content covered in the reading.
- Text is Statistical Mechanics: Entropy, Order Parameters, and Complexity, available both for sale and as a pdf.

This course focuses on those topics in statistical mechanics of interest to scholars in many fields. Topics will include random walks and emergent properties; temperature and equilibrium; phase space dynamics and ergodicity; entropy; free energies; quantum statistical mechanics; calculation and computation; order parameters, broken symmetries, and topology; correlations, response, and dissipation; abrupt phase transitions; and continuous phase transitions, fractals, and the renormalization group.

Statistical Mechanics: Entropy, Order Parameters, and Complexity
Available at Oxford University Press, Amazon.com, and Barnes and Noble.

Statistical Mechanics: Entropy, Order Parameters, and Complexity, now available at Oxford University Press (USA, Europe).
Three Reasons To Take 6561
1. future employment

<table>
<thead>
<tr>
<th>Student ID</th>
<th>Name</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>554-43-5217</td>
<td>Beckwith, Kale</td>
<td>Columbia, Prof.</td>
</tr>
<tr>
<td>999-94-1568</td>
<td>Berthoud, Marc George</td>
<td>Princeton, Prof.</td>
</tr>
<tr>
<td>416-29-6095</td>
<td>Brown, Kevin Scott</td>
<td></td>
</tr>
<tr>
<td>068-88-5185</td>
<td>Carruba, Valerio</td>
<td></td>
</tr>
<tr>
<td>065-88-8774</td>
<td>Catinella, Barbara</td>
<td></td>
</tr>
<tr>
<td>068-88-4445</td>
<td>Cheong, Siew-Ann</td>
<td></td>
</tr>
<tr>
<td>324-64-9460</td>
<td>Clark, Stephen William</td>
<td></td>
</tr>
<tr>
<td>377-80-5577</td>
<td>Crawford, Alice Margaret</td>
<td></td>
</tr>
<tr>
<td>123-78-4575</td>
<td>Dimitrov, Ivo Kolev</td>
<td></td>
</tr>
<tr>
<td>068-88-6203</td>
<td>Dobra, Delia Gabriella</td>
<td></td>
</tr>
<tr>
<td>556-85-8121</td>
<td>Foley, Kerryann Marietta</td>
<td></td>
</tr>
<tr>
<td>484-98-6498</td>
<td>Fox, Jeffrey James</td>
<td></td>
</tr>
<tr>
<td>289-82-2894</td>
<td>Larson, Daniel Robert</td>
<td></td>
</tr>
<tr>
<td>557-83-5231</td>
<td>Lim, Lucy</td>
<td></td>
</tr>
<tr>
<td>342-64-0454</td>
<td>Magerkurth, Alan Jay</td>
<td></td>
</tr>
<tr>
<td>212-19-0674</td>
<td>Merolle, Mauro</td>
<td></td>
</tr>
<tr>
<td>068-88-4474</td>
<td>Moon, Dae-Sik</td>
<td></td>
</tr>
<tr>
<td>181-54-3894</td>
<td>Mull, Fred H</td>
<td></td>
</tr>
<tr>
<td>615-03-7905</td>
<td>Muller, Erik Matthew</td>
<td></td>
</tr>
<tr>
<td>595-43-5560</td>
<td>Nof, Eldar Zeev</td>
<td></td>
</tr>
<tr>
<td>999-94-1838</td>
<td>Pasupathy, Abhay N</td>
<td>Princeton, Prof.</td>
</tr>
<tr>
<td>557-97-3973</td>
<td>Pecorak, Ben Dale</td>
<td></td>
</tr>
<tr>
<td>067-58-6922</td>
<td>Perrella, Andrew C</td>
<td></td>
</tr>
<tr>
<td>323-68-8886</td>
<td>Petta, Jason Robert</td>
<td></td>
</tr>
<tr>
<td>999-94-1770</td>
<td>Shirakawa, Akiko</td>
<td></td>
</tr>
<tr>
<td>262-83-5891</td>
<td>Wrubel, Jonathan Paul</td>
<td></td>
</tr>
<tr>
<td>551-95-1022</td>
<td>Yeh, Richard Cheng-I</td>
<td></td>
</tr>
</tbody>
</table>
2. practice doing math “by hand”

\[
\lim_{\epsilon \to 0^+} \int_{-\infty}^{\infty} \frac{e^{i\omega t}}{\omega - i\epsilon} \frac{d\omega}{2\pi} = ?
\]
3. learn how to solve problems

For what amount of charge does the drop become unstable?
Physics 7635: Solid State Physics I
Dan Ralph

Goal: Enable understanding of and participation in the research frontiers of solid state physics

Prerequisites: Prior completion of courses in graduate-level quantum mechanics (e.g., Phys. 6572), undergraduate-level solid state physics, and undergraduate-level statistical mechanics

Syllabus
1. Crystal structures and their measurement
2. Phonons and heat flow in insulating crystals
3. Non-crystalline solids and two-level tunneling systems
4. Electrons in metals
5. Semiconductors, devices, and defects
6. Interacting electrons: magnetism and superconductivity

Requirements: Weekly problem sets, attendance at Tuesday LASSP/AEP seminars, short report about a research project, final exam.
Phys7685: Intro to Discipline-Based Education Research
(TR 10.10-11.25am, Fall 2017, Clark 294G)

The aim of this course is to introduce students to the topics, literature, and methods of discipline-based education research.

Topics include:
- Research on how people learn
- Student attitudes, motivation, and equity in the classroom
- Active learning and promoting research-based instruction
- Methods of measuring learning
- ...

Activities include:
- Reading education research literature across disciplines
- Evaluating classroom activities based on research perspectives
- Collecting and analyzing education research data
- ...

For more information, contact Prof. Natasha Holmes at ngholmes@cornell.edu
Other beneficial courses

- Mathematical Methods
 - Applied and Engineering Physics (A&EP) 4210, 4220
 - Math 4720 – Statistics
 - Math 4250/4260 – Numerical Analysis
- Computational Techniques / data management
 - Phys 7680
 - CS 4210 – Numerical Analysis and Differential Equations
 - Phys 7681 – Quantum Information Processing
 - See also http://www.cis.cornell.edu/cse/courses.htm
- Education
 - Phys 7690 - Physics Learning and Teaching
Specialties & course requirements

Most Important: Grad school isn’t about taking courses, it’s about doing research. Courses are the “tools” that will enable the transfer of knowledge that expedites your research. In graduate school you transit from the classroom to self-inquiry.

In selecting courses:

- Consult Yellow Booklet
- Consult your Committee
- Talk to your proposed research supervisor/chairperson. He/she is the ultimate arbiter
- Talk to grad students in the group – remember there may be subspecialties within a group
10:00 Welcome

10:05 Your First Two Years

10:20 Graduate Life in Physics

10:35 Core Course Overviews

11:10 Physical Sciences Library
 BEST Program
 Outreach Opportunities

11:25 Physics Graduate Society (PGS)

11:40 Support

11:55 Final Announcements / Questions

August 17, 2017

Welcome

Your First Two Years

Graduate Life in Physics

Core Course Overviews

Physical Sciences Library
 BEST Program
 Outreach Opportunities

Physics Graduate Society (PGS)

Support

Final Announcements / Questions

Professor Lawrence Gibbons, DGS

Professor Lawrence Gibbons, DGS

Chris Parzyck, graduate student

Course Faculty

Henrik Spoon
 Susi Varvayani
 Jen Chu

Thomas Wyse Jackson, PGS President

Janna Lamey, Assistant Dean for Graduate Student Life
See http://guides.library.cornell.edu/phys_grad
See http://www.best.cornell.edu
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Presenter/Leader</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00</td>
<td>Welcome</td>
<td>Professor Lawrence Gibbons, DGS</td>
</tr>
<tr>
<td>10:05</td>
<td>Your First Two Years</td>
<td>Professor Lawrence Gibbons, DGS</td>
</tr>
<tr>
<td>10:20</td>
<td>Graduate Life in Physics</td>
<td>Chris Parzyck, graduate student</td>
</tr>
<tr>
<td>10:35</td>
<td>Core Course Overviews</td>
<td>Course Faculty</td>
</tr>
<tr>
<td>11:10</td>
<td>Physical Sciences Library</td>
<td>Henrik Spoon</td>
</tr>
<tr>
<td></td>
<td>BEST Program</td>
<td>Susi Varvayani</td>
</tr>
<tr>
<td></td>
<td>Outreach Opportunities</td>
<td>Jen Chu</td>
</tr>
<tr>
<td>11:25</td>
<td>Physics Graduate Society (PGS)</td>
<td>Thomas Wyse Jackson, PGS President</td>
</tr>
<tr>
<td>11:40</td>
<td>Support</td>
<td>Janna Lamey, Assistant Dean</td>
</tr>
<tr>
<td></td>
<td></td>
<td>for Graduate Student Life</td>
</tr>
<tr>
<td>11:55</td>
<td>Final Announcements / Questions</td>
<td></td>
</tr>
</tbody>
</table>
Physics Graduate Society (PGS)

Thomas Wyse Jackson

17th August 2017
A few things over the course of the year...
A few things over the course of the year...
A few things over the course of the year...
A few things over the course of the year...
A few things over the course of the year...
A few things over the course of the year...
A few things of
Concepts: Rheology

- The **rheology** of a material determines its response to stress.
 - Can be a function of almost anything! Strain, strain rate, temperature, density, etc.
 - Determined almost always empirically.
- Area of active theoretical research: what models are mathematically/physically consistent and why?
- Example: all memoryless fluids with stress only dependent on strain rate $\dot{\varepsilon}$ must have $\sigma = a\varepsilon + b\dot{\varepsilon} + c\dot{\varepsilon}^2$ from frame-indifference.
 - No fluid has ever been observed with a nonzero $c\dot{\varepsilon}^2$?
Committee

President:
Thomas

Vice-President:
Dante

Treasurer:
Chris

Communications:
Mari
10:00 Welcome
 Professor Lawrence Gibbons, DGS

10:05 Your First Two Years
 Professor Lawrence Gibbons, DGS

10:20 Graduate Life in Physics
 Chris Parzyck, graduate student

10:35 Core Course Overviews
 Course Faculty

11:10 Physical Sciences Library
 Henrik Spoon
 BEST Program
 Susi Varvayani
 Outreach Opportunities
 Jen Chu

11:25 Physics Graduate Society
 Thomas Wyse Jackson, PGS President
 (PGS)

11:40 Support
 Janna Lamey, Assistant Dean
 for Graduate Student Life

11:55 Final Announcements / Questions
Final wisdom

- Attend Colloquia...always
- Go to Monday Lunch --- PSB 401 at ~12:15
 - Meet other students, post-docs, faculty...this is a great chance to learn about research opportunities
 - Hear special announcements and department news
 - Get food at reasonable prices (both Veg & Non-Veg)
- Start investigating potential research areas
 - Attend seminars in fields of interest
 - Talks to students, visit faculty
 - Participate in Research Opportunities sessions
- Don’t forget the required online courses:
 - ES&H Fire, Lab and Office Worker safety
 - http://www.oria.cornell.edu/rcr/
Announcements

• Please enroll in courses and determine your schedule ASAP (by your first TA meeting) to avoid scheduling conflicts.

• Office keys? Don’t forget the online safety courses!

• http://www.oria.cornell.edu/rcr/

Responsible Conduct for Research

The integrity of research conducted at Cornell University is of the utmost importance to the institution as well as to our research sponsors. Cornell is committed to promoting and supporting the ethical and responsible conduct of research across all disciplines so that our researchers are provided an environment in which they may continue to conduct preeminent research, maintain the public’s trust in the excellence of our research, and prepare current and future generations to similarly contribute to research discoveries that will address and advance national and global needs.

Frequently Asked Questions

RCR Informational Handout from March 2 Meeting

Mandatory On-line Instruction: Participants & Timeline

Access On-line Training

Full Version of the Interactive Movie, The Lab, Now Available Online
The end...

Before you begin your journey to becoming a Ph.D. student, you must learn about the most important thing in a Ph.D. student's life...

It surrounds us. It binds all things. It flows through us, it gives us life...

Y-you mean THE F-F... That's right...

Free food. There! Can you smell it?

Jorge Cham © The Stanford Daily